
Wonderwords

Feb 17, 2021





Contents

1 Documentation 3
1.1 Install, Uninstall and Upgrade . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Quickstart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Advanced Tutorial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4 API Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Indices and tables 19

Python Module Index 21

Index 23

i



ii



Wonderwords

Wonderwords is a python package with a command line interface with the purpose of generating random words and
sentences. Wonderwords is free and open source, meaning anyone can contribute to its repository.

Here is a simple example:

>>> from wonderwords import RandomWord
>>>
>>> generator = RandomWord()
>>> generator.word()
'stomach'

The random words can also be further customized:

>>> generator.word(starts_with="ap", include_parts_of_speech=["adjectives"])
'apathetic'

With Wonderwords you can also generate lists of words and sentences, though the sentence feature is in its early
development. To install, head over to the install page. The quickstart is a great place to get started with Wonderwords.

A full reference of all modules (the API documentation) can be found here.

Contents 1



Wonderwords

2 Contents



CHAPTER 1

Documentation

1.1 Install, Uninstall and Upgrade

1.1.1 Prerequisites

Before proceeding, make sure you have the following items installed:

• Python version 3.6 or greater

• A python package manager, such as pip

1.1.2 Install

To install Wonderwords, use your favorite PyPI package manager, such as pip to install the package wonderwords:

$ pip install wonderwords

Once installed, verify that it was correctly installed by going to a python console and typing:

>>> import wonderwords

If you get a ModuleNotFoundError, python cannot find Wonderwords. If you have trouble with installation,
create a new issue at the Wonderwords GitHub page.

The command line interface can be accessed with the wonderwords command. Verify the command line interface
by typing:

$ wonderwords -v

You should get an output similar to the following:

3

https://python.org
https://pip.pypa.io/en/stable/installing/
https://github.com/mrmaxguns/wonderwordsmodule


Wonderwords

1.1.3 Upgrade

To upgrade Wonderwords to the latest stable version, use:

$ pip install --upgrade wonderwords

1.1.4 Uninstall

To uninstall with pip, use:

$ pip uninstall wonderwords

1.2 Quickstart

Wonderwords is a lightweight python tool that can be used to generate random words and sentences. In this tutorial
you will learn the basics of Wonderwords and the command line interface. This tutorial is meant for those who have
never used Wonderwords or those who want to learn more about it. For a full reference of all commands, visit the API
documentation.

Note: This tutorial assumes you have already installed Wonderwords. If this is not the case, head over to the Install,
Uninstall and Upgrade page before proceeding.

1.2.1 The RandomWord class

One of the core Wonderwords classes is the RandomWord class. This class encapsulates operations dealing with
individual words. One method of this class is the word method, which can be used to generate individual random
words:

>>> from wonderwords import RandomWord
>>>
>>> w = RandomWord()
>>> w.word()
'sordid'

Calling the word class returned a string containing a word. When using Wonderwords, it is helpful to create an instance
of the RandomWord class in the top-level module of your project and import it when necessary. Wonderwords loads
word lists only once. If you create a second RandomWord instance, the word lists won’t be loaded twice.

The word Method

What if we want to generate a word that starts with a certain string, say n? Here is where the starts_with and
ends_with arguments come into play. For example, to retrieve a word that starts with "n" and ends with "es", we
can do the following:

>>> w.word(starts_with="n", ends_with="es")
'noodles'

You don’t have to use both arguments. You can specify either one individually like so:

4 Chapter 1. Documentation



Wonderwords

>>> w.word(starts_with="can")
'cannon'

Sometimes, however, we may try to look for a pattern that doesn’t exist. In that case a NoWordsToChoseFrom
exception is raised:

>>> w.word(starts_with="ja", ends_with="ka")
NoWordsToChoseFrom: There aren't enough words to choose from. Cannot generate 1
→˓word(s)

We can also narrow down a word by part of speech. By default, nouns, verbs and adjectives are all enabled. If you
want to generate a word by only a certain part of speech, you can use the include_categories parameter:

>>> w.word(include_categories=["adjective"])
'tough'
>>> w.word(include_categories=["noun", "verb"])
'cinder'

We can also filter words by length using the word_min_length and word_max_length parameters:

>>> w.word(word_min_length=5)
'documentary'
>>> w.word(word_max_length=3)
'dog'
>>> w.word(word_min_length=9, word_max_length=10)
'velodrome'

Finally, we can filter words by a custom python regular expression:

>>> w.word(regex="..")
'TV'
>>> w.word(regex=".*a")
'terracotta'

Remember that we can combine multiple filters together, like so:

>>> w.word(
... word_min_length=4,
... starts_with="k",
... include_categories=["verb"]
... )
'keep'

The filter method

As you saw above, the word class allows the filtering of many words. What if we want to get a list of all words that
match a certain filter? The filter method allows us to get all words matching a certain criteria:

>>> w.filter(word_min_length=4, starts_with="loc")
['locality',
'local',
'locket',
'location',
'locomotive',
'locust',

(continues on next page)

1.2. Quickstart 5

https://docs.python.org/3/library/re.html


Wonderwords

(continued from previous page)

'locker',
'lock',
'locate']

The filter method has the same arguments as the word method, except it returns all matching words, while the
word method matches a random word fitting the criteria.

The random_words method

The random_words method acts just like the filter method, except with two differences:

• You can limit the amount of words fitting the criteria

• If there aren’t enough words to reach the limit, a NoWordsToChoseFrom exception is raised unless
return_less_if_necessary is set to True.

This method is useful if you want to get a list of words:

>>> w.random_words(3)
['prince', 'handover', 'cell']
>>> w.random_words(4, word_min_length=5, starts_with="a")
['abrogation', 'animal', 'appropriation', 'angry']
>>> w.random_words(3, word_min_length=5, starts_with="alg") # The exception is
... # raised as 3 words
→˓cannot be generated
NoWordsToChoseFrom: There aren't enough words to choose from. Cannot generate 3
→˓word(s)
>>> w.random_words(3, word_min_length=5, starts_with="alg", return_less_if_
→˓necessary=True)
['algebra', 'algorithm']

1.2.2 The RandomSentence class

Wonderwords makes generation of structured sentences made of random words easy. The RandomSentence class
houses many of these features. You should keep an instance of this class at the top-level of your project just like the
RandomWord class:

>>> from wonderwords import RandomSentence
>>>
>>> s = RandomSentence()

Creating sentences with the RandomSentence class

The RandomSentence class provides multiple methods to generate random sentences, for example:

>>> s.bare_bone_sentence() # generate a bare-bone sentence (The [subject] [predicate])
'The hut frames.'
>>> s.simple_sentence() # generate a simple sentence
'The reprocessing formulates enrollment.'
>>> s.sentence() # a sentence with a subject, predicate, adjective and direct object
'The strong mean shears movement.'

As you can see, these sentences have almost no meaning, and are very simple and structured. These sentences are
good for creating memorable phrases for your programs.

6 Chapter 1. Documentation



Wonderwords

1.2.3 The Wonderwords CLI

Note: in the following section, terminal prompts will be denoted by $. Do not copy the $ when copying the code in
this section.

Wonderwords also provides a CLI, or command line interface which is installed along with the python modules. To
use the CLI, open your terminal and type the command wonderwords:

$ wonderwords

When typing the wonderwords command, you are greeted with a main page with basic information, such as
basic commands and the wonderwords version. To get a full list of commands, type wonderwords -h or
wonderwords --help.

Generating random words

To generate a random word, use the -w or --word flag. A random word will be printed to the console:

$ wonderwords -w

All of the filters that you have learned above have their own commands, too:

$ wonderwords -w -sw a -ew e # -sw: starts with, -ew ends with; word that starts with
→˓a and ends with e
$ wonderwords -w -p nouns verbs # -p: parts of speech; select only nouns and verbs
$ wonderwords -w -min 3 -max 5 # -min: minimum length, -max maximum length; minimum
→˓length 3 and maximum length 5

Generating filters and lists

You can also generate filters with the -f flag and lists with the -l flag. All modifiers such as -sw and -min can also
be used. Additionally, the -d flag can set a delimiter between words:

$ wonderwords -f -min 3 # get all words with a minimum length of 3
$ wonderwords -l 5 -sw ap # get 5 words that start with "ap"
$ wonderwords -l 3 -d " | " # get 3 random words separated with " | "

Generating random sentences

The -s flag followed by a sentence type can generate a random sentence. The options of type are:

• bb: bare-bone sentence

• ss: simple sentence

• bba: bare-bone sentence with adjective

• s: a simple sentence plus and adjective

For example:

$ wonderwords -s bb # generate a bare-bone sentence
$ wonderwords -s ss # generate a simple sentence

1.2. Quickstart 7



Wonderwords

1.2.4 And that’s it!

The quickstart tutorial has come to an end. In this tutorial, you learned the basics of Wonderwords. More specifically,
you learned about:

• The RandomWord class

– The word method

– The filter method

– The random_words method

• The RandomSentence class and some of its methods

• How to use the Wonderwords command line interface

What’s next?

After you have gotten comfortable using wonderwords, check out the Advanced Tutorial tutorial. You can use the API
reference for help on specific classes, and functions. If you want to contribute, please read the contribution guidelines.
If you have any problems, bugs, or feature requests, please open up an issue on the Wonderwords GitHub page.

1.3 Advanced Tutorial

Note: This tutorial assumes you already know the basics of Wonderwords. Check out the Quickstart if you haven’t
already done so.

Random word generation is awesome, but what if we want to add a custom list of words? In this tutorial, you will
learn how to customize Wonderwords to unleash its full potential.

Let’s start out by creating file called random_name_generator.py. At the end of the tutorial we’ll be creating a
simple program which generates random names.

1.3.1 Custom categories

Wonderwords allows adding custom categories of words to our generator. The RandomWord class actually takes an
unlimited amount of keyword arguments, where the keys are the names of our custom categories, and the values are
lists of words in those categories.

Here’s an example:

from wonderwords import RandomWord

fruits = ["apple", "orange", "banana", "strawberry"]
generator = RandomWord(fruit=fruits)

print(generator.word()) # ex: apple

Let’s break this down:

1. First, we import the RandomWord class from wonderwords.

2. We then define a list of fruits.

8 Chapter 1. Documentation

https://github.com/mrmaxguns/wonderwordsmodule/


Wonderwords

3. After that, we create a new instance of RandomWord, where we create a category called fruit. Normally,
we define category names in the singular form, so fruit instead of fruits.

4. We print a random word from all the available categories.

All of the arguments we had when generating random words from the default word lists are available. Word length,
what a word starts and ends with, and custom regular expressions can all be specified when generating a random word
with custom categories.

We can add as many word lists as we want:

animals = ["cow", "cat", "dog", "elephant"]
plants = ["tree", "grass", "sunflower"]
generator2 = RandomWord(animal=animals, plant=plants)

print(generator2.word()) # ex: grass (all categories are enabled by default)
print(generator2.word()) # ex: cat
print(generator2.word(include_categories=["animal"])) # ex: dog

As illustrated in the example above, we can include only specific categories with include_categories. We have
already seen this argument before, when specifying parts of speech, such as “noun” and “verb”. But now, we can no
longer generate random nouns, verbs, and adjectives. The following code won’t work:

generator2.word(include_categories=["noun"])
# ValueError: 'noun' is an invalid category
# :(

This is because when we specify custom categories, the default configuration is overwritten. What if we want both a
custom category, and one of the default categories as well? This can be done with Defaults:

from wonderwords import RandomWord, Defaults

writing_utensils = ["graphite pencil", "pen", "marker", "colored pencil"]
generator = RandomWord(

utensil=writing_utensils,
adjective=Defaults.ADJECTIVES

)
print(generator.word()) # ex: angry
print(generator.word(include_categories=["utensil"])) # ex: marker
print(generator.word(include_categories=["adjective"])) # ex: sparkling

Defaults is a python object that has a number of constants representing various default categories. We can specify
one of these categories instead of a list of words, and a list of words represented by the category will be used. With the
help of Defaults and custom categories, we can define complex configurations with relatively few lines of code.
Currently, Defaults has four categories:

• Defaults.NOUNS: for nouns

• Defaults.VERBS: for verbs

• Defaults.ADJECTIVES: for adjectives

• Defaults.PROFANITIES: for curse words

1.3.2 Creating the random name generator

With all of that, let’s get back to our random name generator. First, we’ll do some initial setup. Put the following lines
at the top of random_name_generator.py:

1.3. Advanced Tutorial 9



Wonderwords

from wonderwords import RandomWord

# Note: here, we put the names in a list, but when you're writing code with
# large lists, you typically put them in a file, and read from there.
FIRST_NAMES = ["Jane", "Bob", "Anne", "Max", "Jake"]
LAST_NAMES = ["Jacobson", "Johnson", "Miller", "Rodriguez", "Davis"]

Here we import RandomWord and create a list of first names, and a list of surnames. Now, let’s create an instance of
the RandomWord class:

generator = RandomWord(name=FIRST_NAMES, surname=LAST_NAMES)

Here we create a random word generator with two categories: name and surname. We pass the lists we defined
earlier to the categories. Now it’s time to write our main function, where the bulk of our code will reside:

def main():
while True:

# We put this here, so that the user can chose to generate another
# word or quit.
action = input("Generate (enter) or quit (q) ").strip()

if action.lower() == "q":
break

first_name = generator.word(include_categories=["name"])
last_name = generator.word(include_categories=["surname"])
print(first_name, last_name)

print("Thanks for using the generator!")

We start out by defining our main function. Here we create a while loop that runs until the player decides to quit.
The first thing we do is check if the player wants to continue generating random words. We use the strip method to
remove any trailing/leading whitespace. If the player types “q”, or “Q”, then the program quits.

We then generate a random first and last name. We use include_categories to specify the categories used.
Finally, we print the generated full name.

The only thing left is to call our main function:

if __name__ == "__main__":
main()

In the code above, we call the main function as long as we run the code directly. If someone imports our code, the
main function won’t run.

That’s it! If you’ve read this far, you have completely mastered Wonderwords. Go on, and put your newly learned
skills to practice.

1.4 API Documentation

Here you can find a list of Wonderwords modules and their relevant documentations. If you are new to Wonderwords,
it is highly suggested that you start with the quickstart.

1.4.1 wonderwords.random_word

The random_word module houses all classes and functions relating to the generation of single random words.

10 Chapter 1. Documentation



Wonderwords

class wonderwords.random_word.Defaults
Bases: enum.Enum

This enum represents the default word lists. For example, if you want a random word generator with one
category labeled ‘adj’ for adjectives, but want to use the default word list, you can do the following:

>>> from wonderwords import RandomWord, Defaults
>>> w = RandomWord(adj=Defaults.ADJECTIVES)
>>> w.word()
'red'

Options available:

• Defaults.NOUNS: Represents a list of nouns

• Defaults.VERBS: Represents a list of verbs

• Defaults.ADJECTIVES: Represents a list of adjectives

• Defaults.PROFANITIES: Represents a list of curse words

exception wonderwords.random_word.NoWordsToChoseFrom
Bases: Exception

NoWordsToChoseFrom is raised when there is an attempt to access more words than exist. This exception may
be raised if the amount of random words to generate is larger than the amount of words that exist.

class wonderwords.random_word.RandomWord(**kwargs)
Bases: object

The RandomWord class encapsulates multiple methods dealing with the generation of random words and lists
of random words.

Example:

>>> from wonderwords import RandomWord, Defaults
>>>
>>> r = RandomWord(noun=["apple", "orange"]) # Category 'noun' with
... # the words 'apple' and 'orange'
>>> r2 = RandomWord() # Use the default word lists
>>> r3 = RandomWord(noun=Defaults.NOUNS) # Set the category 'noun' to
... # the default list of nouns

Important: Wonderwords version 2.0 does not have custom categories. In fact there are only three categories:
nouns, verbs, and adjectives. However, wonderwords will remain backwards compatible until version 3. Please
note that the parts_of_speech attribute will soon be deprecated, along with other method-specific features.

Parameters **kwargs – keyword arguments where each key is a category of words and value is a
list of words in that category. You can also use a default list of words by using the Default enum
instead.

filter(starts_with: str = ”, ends_with: str = ”, include_categories: Optional[List[str]] = None, in-
clude_parts_of_speech: Optional[List[str]] = None, word_min_length: Optional[int] = None,
word_max_length: Optional[int] = None, regex: Optional[str] = None)

Return all existing words that match the criteria specified by the arguments.

Example:

1.4. API Documentation 11



Wonderwords

>>> # Filter all nouns that start with a:
>>> r.filter(starts_with="a", include_categories=["noun"])

Important: The include_parts_of_speech argument will soon be deprecated. Use
include_categories which performs the exact same role.

Parameters

• starts_with (str, optional) – the string each word should start with. Defaults
to “”.

• ends_with (str, optional) – the string each word should end with. Defaults to
“”.

• include_categories (list of strings, optional) – a list of strings de-
noting a part of speech. Each word returned will be in the category of at least one part of
speech. By default, all parts of speech are enabled. Defaults to None.

• include_parts_of_speech (list of strings, optional) – Same as in-
clude_categories, but will soon be deprecated.

• word_min_length (int, optional) – the minimum length of each word. Defaults
to None.

• word_max_length (int, optional) – the maximum length of each word. De-
faults to None.

• regex (str, optional) – a custom regular expression which each word must fully
match (re.fullmatch). Defaults to None.

Returns a list of unique words that match each of the criteria specified

Return type list of strings

random_words(amount: int = 1, starts_with: str = ”, ends_with: str = ”, include_categories:
Optional[List[str]] = None, include_parts_of_speech: Optional[List[str]] = None,
word_min_length: Optional[int] = None, word_max_length: Optional[int] = None,
regex: Optional[str] = None, return_less_if_necessary: bool = False)

Generate a list of n random words specified by the amount parameter and fit the criteria specified.

Example:

>>> # Generate a list of 3 adjectives or nouns which start with
... # "at"
>>> # and are at least 2 letters long
>>> r.random_words(
... 3,
... starts_with="at",
... include_parts_of_speech=["adjectives", "nouns"],
... word_min_length=2
... )

Parameters

• amount (int, optional) – the amount of words to generate. Defaults to 1.

• starts_with (str, optional) – the string each word should start with. Defaults
to “”.

12 Chapter 1. Documentation



Wonderwords

• ends_with (str, optional) – the string each word should end with. Defaults to
“”.

• include_categories (list of strings, optional) – a list of strings de-
noting a part of speech. Each word returned will be in the category of at least one part of
speech. By default, all parts of speech are enabled. Defaults to None.

• include_parts_of_speech (list of strings, optional) – Same as in-
clude_categories, but will soon be deprecated.

• word_min_length (int, optional) – the minimum length of each word. Defaults
to None.

• word_max_length (int, optional) – the maximum length of each word. De-
faults to None.

• regex (str, optional) – a custom regular expression which each word must fully
match (re.fullmatch). Defaults to None.

• return_less_if_necessary (bool, optional) – if set to True, if there aren’t
enough words to statisfy the amount, instead of raising a NoWordsToChoseFrom excep-
tion, return all words that did statisfy the original query.

Raises NoWordsToChoseFrom – if there are less words to choose from than the amount that
was requested, a NoWordsToChoseFrom exception is raised, unless return_less_if_necessary
is set to True.

Returns a list of the words

Return type list of strings

word(starts_with: str = ”, ends_with: str = ”, include_categories: Optional[List[str]] = None, in-
clude_parts_of_speech: Optional[List[str]] = None, word_min_length: Optional[int] = None,
word_max_length: Optional[int] = None, regex: Optional[str] = None)

Returns a random word that fits the criteria specified by the arguments.

Example:

>>> # Select a random noun that starts with y
>>> r.word(ends_with="y", include_parts_of_speech=["nouns"])

Parameters

• starts_with (str, optional) – the string each word should start with. Defaults
to “”.

• ends_with (str, optional) – the string the word should end with. Defaults to “”.

• include_categories (list of strings, optional) – a list of strings de-
noting a part of speech. Each word returned will be in the category of at least one part of
speech. By default, all parts of speech are enabled. Defaults to None.

• include_parts_of_speech (list of strings, optional) – Same as in-
clude_categories, but will soon be deprecated.

• word_min_length (int, optional) – the minimum length of the word. Defaults
to None.

• word_max_length (int, optional) – the maximum length of the word. Defaults
to None.

1.4. API Documentation 13



Wonderwords

• regex (str, optional) – a custom regular expression which each word must fully
match (re.fullmatch). Defaults to None.

Raises NoWordsToChoseFrom – if a word fitting the criteria doesn’t exist

Returns a word

Return type str

1.4.2 wonderwords.random_sentence

Generate structured sentences in which every word is random.

class wonderwords.random_sentence.RandomSentence(nouns: Optional[List[str]] = None,
verbs: Optional[List[str]] = None,
adjectives: Optional[List[str]] =
None)

Bases: object

The RandomSentence provides an easy interface to generate structured sentences where each word is randomly
generated.

Example:

>>> s = RandomSentence(nouns=["car", "cat", "mouse"], verbs=["eat"])
>>> s2 = RandomSentence()

Parameters

• nouns (list, optional) – a list of nouns that will be used to generate random nouns.
Defaults to None.

• verbs (list, optional) – a list of verbs that will be used to generate random verbs.
Defaults to None.

• adjectives (list, optional) – a list of adjectives that will be used to generate
random adjectives. Defaults to None.

bare_bone_sentence()
Generate a bare-bone sentence in the form of The [subject (noun)] [predicate (verb)]..
For example: The cat runs..

Example:

>>> s.bare_bone_sentence()

Returns string in the form of a bare bone sentence where each word is randomly generated

Return type str

bare_bone_with_adjective()
Generate a bare-bone sentence with an adjective in the form of: The [(adjective)] [subject
(noun)] [predicate (verb)].. For example: The skinny cat reads.

Example:

>>> s.bare_bone_with_adjective()

14 Chapter 1. Documentation



Wonderwords

Returns a string in the form of a bare-bone sentence with an adjective where each word is
randomly generated

Return type str

sentence()
Generate a simple sentence with an adjective in the form of: The [(adjective)] [subject
(noun)] [predicate (verb)] [direct object (noun)].. For example: The green
orange likes food.

Example:

>>> s.sentence()

Returns a string in the form of a simple sentence with an adjective where each word is randomly
generated

Return type str

simple_sentence()
Generate a simple sentence in the form of The [subject (noun)] [predicate (verb)]
[direct object (noun)].. For example: The cake plays golf.

Example:

>>> s.simple_sentence()

Returns a string in the form of a simple sentence where each word is randomly generated

Return type str

1.4.3 Command Line Interface

The Wonderwords command line interface can be accessed with the wonderwords command. Usage:

usage: wonderwords [-h] [-w] [-f] [-l LIST] [-s {bb,ss,bba,s}] [-v] [-sw STARTS_WITH]
→˓[-ew ENDS_WITH]

[-p {noun,verb,adjective,nouns,verbs,adjectives} [{noun,verb,
→˓adjective,nouns,verbs,adjectives} ...]] [-min WORD_MIN_LENGTH]

[-max WORD_MAX_LENGTH] [-r REGEX] [-d DELIMITER]

optional arguments:
-h, --help show this help message and exit
-w, --word, --random-word

generate a random word
-f, --filter filter a list of words matching the criteria specified
-l LIST, --list LIST return a list of words of a certain length
-s {bb,ss,bba,s}, --sentence {bb,ss,bba,s}

return a sentence based on the structure chosen
-v, --version Print the version number and exit
-sw STARTS_WITH, --starts-with STARTS_WITH

specify what string the random word(s) should start with
-ew ENDS_WITH, --ends-with ENDS_WITH

specify what string the random word(s) should end with
-p {noun,verb,adjective,nouns,verbs,adjectives} [{noun,verb,adjective,nouns,verbs,

→˓adjectives} ...], --parts-of-speech {noun,verb,adjective,nouns,verbs,adjectives} [
→˓{noun,verb,adjective,nouns,verbs,adjectives} ...]

(continues on next page)

1.4. API Documentation 15



Wonderwords

(continued from previous page)

specify to only include certain parts of speech (by default
→˓all parts of speech are included)
-min WORD_MIN_LENGTH, --word-min-length WORD_MIN_LENGTH

specify the minimum length of the word(s)
-max WORD_MAX_LENGTH, --word-max-length WORD_MAX_LENGTH

specify the maximum length of the word(s)
-r REGEX, --regex REGEX, --re REGEX, --regular-expression REGEX

specify a python-style regular expression that every word
→˓must match
-d DELIMITER, --delimiter DELIMITER

Specify the delimiter to put between a list of words, default
→˓is ', '

Core commands

There are a number of core commands that provide basic functionality:

• -w or --random-word: generate a random word

• -f or --filter: return a list of words based on specified criteria

• -l LIST or --list LIST: much like filter, except you need to specify an integer of the amount of words
you want to get

• -s {bb,ss,bba,s} or --sentence {bb,ss,bba,s} generate a sentence. You must specify the sen-
tence type from the following types:

– bb: bare bone sentence

– ss: simple sentence (bare bone sentence with a direct object)

– bba: bare bone sentence with an adjective

– s: simple sentence with an adjective

• -v or --version: return the version and exit

• -h or --help: show a list of commands

Other commands

The following commands apply only to random-word, filter and list:

• -sw or --starts-with: the string the word(s) must start with

• -ew or --ends-with: the string the word(s) must end with

• -p or --parts-of-speech: only include certain parts of speech, choose one or more from nouns, verbs
and adjectives

• -min or --word-min-length: the minimum length of each word

• -max or --word-max-length: the maximum length of each word

• -r or --regex or --re or --regular-expression: use a custom python regular expression in order to
filter a word. All words that do not fully match the expression will be removed.

The following commands apply only to filter and list:

• -d DELIMITER or --delimiter DELIMITER: the delimiter used to separate words. Is “, ” by default.

16 Chapter 1. Documentation



Wonderwords

Examples

$ wonderwords -w -sw ma -max 5 # choose a random word which starts with "ma" and is a
→˓max length of 5
$ wonderwords -f -sw a -ew k -p nouns # choose all nouns that start with a, and ends
→˓with k
$ wonderwords -l 5 -sw n -d " & " # random a list of 5 nouns separated by " & " that
→˓start with "n"
$ wonderwords -s bb # generate a random bare-bone sentence
$ wonderwords -v # print the version

1.4. API Documentation 17



Wonderwords

18 Chapter 1. Documentation



CHAPTER 2

Indices and tables

• genindex

• API Documentation

• modindex

• search

19



Wonderwords

20 Chapter 2. Indices and tables



Python Module Index

w
wonderwords.random_sentence, 14
wonderwords.random_word, 10

21



Wonderwords

22 Python Module Index



Index

B
bare_bone_sentence() (wonder-

words.random_sentence.RandomSentence
method), 14

bare_bone_with_adjective() (wonder-
words.random_sentence.RandomSentence
method), 14

D
Defaults (class in wonderwords.random_word), 10

F
filter() (wonderwords.random_word.RandomWord

method), 11

N
NoWordsToChoseFrom, 11

R
random_words() (wonder-

words.random_word.RandomWord method),
12

RandomSentence (class in wonder-
words.random_sentence), 14

RandomWord (class in wonderwords.random_word), 11

S
sentence() (wonder-

words.random_sentence.RandomSentence
method), 15

simple_sentence() (wonder-
words.random_sentence.RandomSentence
method), 15

W
wonderwords.random_sentence (module), 14
wonderwords.random_word (module), 10
word() (wonderwords.random_word.RandomWord

method), 13

23


	Documentation
	Install, Uninstall and Upgrade
	Quickstart
	Advanced Tutorial
	API Documentation

	Indices and tables
	Python Module Index
	Index

